一、题目描述
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
二、解题思路
暴力法的时间复杂度是 O(n^3)。可以先固定一个值,然后寻找后两个值时可采取双指针的方法,将总的时间复杂度优化到 O(n^2)。
实现的过程中,要注意优化以及去重。
首先我们先对原数组进行排序,这样可以把重复的值集中到一起,便于去重。
确定第一个元素时,如果它已经比 0 大了,那么可以直接跳出循环,因为后面的数字都比它大。如 [1, 2, 3, 4], i = 0, nums[i] > 0, 这样是不可能产生合法的情况的,直接 break。
确定第一个元素时,如果发现它与它前面的值一样,那么跳过本轮。如 [-1, -1, 0, 1], 在第一轮后,已经选出了 {-1, 0, 1}, 现在 i = 1,nums[i] == nums[i - 1], 为了避免重复,直接 continue。
接下来利用双指针,left 指向 i + 1, right 指向 nums.length - 1。逐个进行判断,并注意去重。